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Let Ln(f, x)(fE CEO, 00» be a Bernstein-type approximation operator as defined
and studied by Bleimann, Butzer, and Hahn. Probabilistic arguments are used to
simplify and sharpen some of their results. The rates of convergence are given in
terms of the first and second moduli of continuity. Moreover, an appropriate limit
of L n is shown to be the well-known Szasz operator. © 1988 Academic Press. Inc.

1. INTRODUCTION

Let CEO, 00) be the space of continuous functions on the unbounded
interval [0, 00), and let IE CEO, 00). Bleimann, Butzer, and Hahn [1]
introduced a Bernstein-type approximation operator defined by

nEN. (1)

They proved that Ln(f, x) -+I(x) (as n -+ 00) for each x E [0,00), and
found a rate of convergence by estimating \LnCf, x) - l(x)1 in terms of the
second modulus of continuity ofIE CB[O, 00). Here CB[O, 00) is the space
of bounded and uniformly continuous functions on [0, 00). The object of
this note is to exploit probabilistic arguments to simplify and sharpen some
of their results. The rates of convergence are given in terms of the first
and second moduli of continuity. We show that ILn(f, x) - l(x)1 ~

3w(f, Jx( 1+ X)2In), where w(f, b) is the first modulus of continuity of f
An improved version of Theorem 2 of [1] is given by showing that

ILn(f, x) - l(x)1 ~ 2C [ W2 (f, JX{1 ; X)2) + x(1; X)2 11/11 ] '
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where W2(J, b) is the second modulus of continuity of fE CB[O, 00), and
Ilfll = SUPXE [0, ro) If(x)l. Moreover, it is shown that an appropriate limit of
L n is the famous Szasz operator.

2. THE RATES OF CONVERGENCE

Let YI'Y2'''' be independent and identically distributed random
variables such that P(YI = I) =p, P(YI = 0) = q, where p = x/(l +x) and
q= 1/(1 +x), XE [0,00). To avoid trivialities let X>O. Clearly,
Sn =YI + ... +Yn follows a binomial distribution b(n, p) with parameters n
and p, and

P(Sn = k) = (~) pkqn-k, k = 0, 1, 2, ..., n. (2)

Set Xn=Sn/(n-Sn+1), n=I,2, ..., and note from (1) that
Ln(J, x) = Ef(Xn), where E denotes the expectation operator. Since
Xn -+ p/q = x in probability as n -+ 00, then Ln(J, x) -+ f(x) (as n -+ 00) by
the law of large numbers if f ECEO, 00) (cf. Khan [5]). To obtain sharper
results we will first compute EXn and Ex;. and estimate en(x) = E(Xn- xf
It is rather trivial to show that

as n -+ 00. (3)

From (2) and the definition of X n it follows that

~ k n! k n-k
= /:1 (n-k+ l)(k-l)! (n-k+ 1)!P q

n~ 1 (J'+ 1) ," n. p'·+1 n-j-I= L... ( .) ., ( .) , q
j=O n-J J. n-J.

n- 1 n !~ + 1qn - j - 1 n- 1 n! ~ + 1qn - j - 1

= j~1 (n - j)(j - 1)! (n - j)! + j~O (n - j)j! (n - j)!
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Letting k =j - 1 and recalling that p = 1 - q = x/( 1+x) one finds that
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n-2 ( ) [k k ]x n k+2 n-k-2 n- n-
E~=n(l+xt+k~o k p q n-k-l+(k+l)(n-k-l)

x nf 2(n) k+2 n-k-2 (n-k)(k+2)
=n(l+xt+k~o k p q (n-k-l)(k+l)'

Since

(n - k)(k + 2) = 1 +_----.:...(n_+----.:,1)__
(n-k-l)(k+ 1) (k+ l)(n-k-l)'

then

X n-2 (n) n-2 (n+ 1)!pk+2 qn-k-2
E~ = n+ L: pk + 2 qn - k - 2 + L: -,-.:....----.:......:.--=-----

n(l+x) k=O k k~o(k+l)!(n-k)!(n-k-l)

(4)

where

R= n-2 (n+ 1)!pk+2qn-k-2

k~O (k+ 1)!(n-k)!(n-k-l)'

Now we will analyze the term R. Setting k + 1 = j we have

R = n- 1 (n + I)!pi + 1 qn - j - 1 n- 1 (n + 1) pi + 1 qn - j - 1

L: Of ( •+ 1)' ( .) L ° (0)j=IJ· n-J . n-J j=1 J n-J

Since (n-j)-I=(n-j+2)-I(I+2/(n-j)):::::;3/(n-j+2), l:::::;j:::::;n-l
(n ~ 2), we have

n-I (n+ l)pi+lqn- j -1 3p n+1 (n+ 1) piqn+I--:j
R:::::;3 L:. 0:::::;2" L: ° •

j=1 J (n-J+2) q j~O J (n-J+2)

:::::; 3x( 1+x) E( (n + 1- Y) + 1)-I = 3x( 1+x) E( ~ + 1) - I,
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where Y has binomial distribution b(n + 1, p), and ~ = n + 1- Y is
b(n + 1, q), q = 1-p. Hence a result of Chao and Strawderman [2, p. 430]
gives

R:::; 3x(1 + x)(l- pn+2)j(n + 2) q:::; 3x(1 + x)2j(n + 2). (5)

Letting en(x)=E(Xn-xf it follows from (3), (4), and (5) that

en(x) =n(1 :xr +x
2C:xr -nxC:xr +R

x 2( x)n (x)n 3x(1+x)2:::; +x -- -nx -- +---
n( 1+ xr 1+ x 1 + x n + 2

Since (xj(1 + xW:::; (1 + x)jn, we have

()
x x 2(1+ x) 3x( 1+ X)2 4x( 1+ X)2

en X :::; - + + :::; ---'----'---
n n n n

(6)

Let CnO, (0) be the space of continuous bounded functions on [0, (0).
Obviously CnO, 00 ) is a larger space than CB[O, (0) of Section 1. In order
to establish our first result let fE CnO, (0) and set m(f, J) =
sup{lf(x) - f(y)l: Ix- yl :::; J, x, yE [O,oo)}, J >0. The follQwing theorem
gives the rate of convergence in terms of the first modulus of continuity
m(f, J).

THEOREM 1. Let Ln(f, x) be defined by (1) and f E CnO, (0). Then

ILn(f, x) - f(x)1 :::; 3m(f, J x( 1 + X)2 jn), (7)

Proof Let b>O and A.= [IXn-xljJ], [a] denotes the greatest integer
:::;a. Clearly, If(Xn) - f(x)1 :::; (1 + A.) m(f, J), and

ILn(f, x) - f(x)1 = IEf(Xn) - f(x)1 :::; m(f, J)(1 + EA.).

The inequality EA.:::; jEi2:::; Jen(x)jJ2 combined with (6) gives

(
2(1 +x) vh)

ILn(f,x)-f(x)l:::;m(f,J) 1+ bj;, ,

and (7) follows on taking J = (1 + x) #.
Theorem 1 can be strengthened by using the second modulus of con

tinuity (cf. [1]). Let 1I,pII=suPxE[o.oo) 1,p(x)l, where ,pECB[O, (0). With
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J2f=f(x + 2t) - 2f(x + t) +f(x) (fE CB[O, (0)) define the second modulus
of continuity by

wAf, J) = sup IIJ2fll, J > O.
t: ItI ., b

Letting h = Xn - x we obtain from (3) that

IEhl ~x(xj(1 +xW~x(1 +x)jn. (8)

An improved version of a result due to Bleimann, Butzer, and Hahn is
given below by dropping the unpleasant condition n ~ N(x) = 24(1 + x) in
Theorem 2 of [1]. To this end we need the following elementary result.

Let g E CB[O, (0) be such that g' and g" E CB[O, (0). With h = Xn- x we
note that

g(Xn)- g(x) = (g'(X + t) dt = hg'(x + h) - ( tg"(x + t) dt.

Taking expectation and using (6) and (8) it is easy to see that

1
ILn(g, x) - g(x)1 ~ IEhlllg'll +"2 Eh2 11g"ll

x( 1+ x) II 'I 2x( 1+ x f II "1
~ g 1+ g I.

n n

Hence we have

2x(1 + X)2
ILn(g, x) - g(x)1 ~ (1Ig'll + Ilg"II).

n
(9)

Using (9) in the proof of Theorem 2 of [1] we obtain the following
stronger version.

THEOREM 2. Let fE CB[O, (0), X E [0,(0). Then for n = 1, 2, ...,

[ (
JX(1 + X)2) x(1 + X)2 ]

ILn(f, x) - f(x)1 ~ 2C W 2 f, n + n Ilfll,

where C is a constant.

Remark. Totik [6] proves a saturation class theorem giving a
necessary and sufficient condition for sUPx~oILn(f,x)-f(x)I=O(n-I).

However, this saturation property (dependent on f' and 1") is, by no
means, an improvement of Theorem 2.
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3. A LIMITING PROPERTY OF L n

Let fEe B[O, 00). Define the Szasz operator by

-m, 00 (k) (mx)k
Sm(f, x)=e . L f - -k-'-'

k~O m .
x~O, ( 10)

where m is a fixed positive integer. That Sm(f, x) is an appropriate limit of
Ln is an interesting consequence. The following lemma is needed to prove
this limiting property.

LEMMA. Let Pk(mn, x)= ("t)(x/n)k(l +x/n)-mn, k=O, 1, ..., mn, and
!Y.k(mx) = exp( -mx)(mx)k/k!, k =0,1,2, .... Then

(i) !Y.k(mx) exp( -k(k - 1)/(mn - k + 1)) ~Pk(mn, x) ~ !Y.k(mx) exp(mx 2
/

(n + x)),

mn
(ii) L !Pk(mn, x) - !Y.k(mx)I--+ 0

k~O

as n --+ 00,

(iii) max !Pk(mn, x) - !Y.k(mx)I--+°as n --+ 00.
O~k~mn

Proof Since e - r ~ 1 - t (0 ~ t ~ 1), it follows that

(
mn)( x )k( X )mn-k (mx)k ( X )mnPk(mn,x)= -- 1--- ~-- 1---
k n+x n+x k! n+x

~ !Y.k(mx) exp(mx2/(n + x)).

Since (1 - P) ~ exp( - P/( 1 - P)) (0 ~ p< 1), it follows that

(mx)k k ( i-l)( x )mn
Pk(mn, x)=-,- fl 1-- 1---

k. i=! mn n+x

(mx)k( k-l)k( X )mn
~-- 1--- 1---

k! mn n+x

~ !Y.k(mx) exp( -k(k - 1)/(mn - k + 1)),

and (i) is proved. To prove (ii) let Uk = Pk(mn, x) - !Y.k(mx), and
~k = !Y.k(mx)(exp(mx2/(n + x)) - 1), 11k = !Y.k(mx)(1 - exp( -k(k -1 )/(mn
k+ 1))). Since -11k~Uk~~k from (i), and IUkl ~~k+11k' we have

mn mn mn

L IUkl ~ L ~k+ L 11k'
k~O k~O k~O

(11 )
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It is obvious that

mn
L ~k ~ (exp(mx2/(n + x)) - 1) --+ 0

k=O

as n --+ 00.
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(12)

Since exp( - v) ~ 1- min( 1, v) (v ~ 0), it follows that

where W is a Poisson random variable with mean mx. It is easy to verify
that

as n --+ 00. (13)

Hence (ii) follows from (11), (12), and (13), and (ii) implies (iii).

THEOREM 3. Let L n and Sm be respectively defined by (1) and (10) for
fECB[O, (0). Then for each XE [0, (0) andfor a fixed integer m,

as n --+ 00. (14)

Proof From (1) and (to) we have

( (
nx ) X) mn ( nk )

L mn f l+x ';; = k~/ mn+l pk(mn,x)=un(m, x),

and

mn (k) 00 (k)
Sm(f, x)= k~/ m IXk(mx) +k~~+/ m IXk(mx)

= Qn(m, x) + Rn(m, x).

Thus

640/53/3·5
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Since f is bounded, we have
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00

IRAm, x)I ~M L iXk(mx) --.0
k=mn+ 1

Moreover,

as n -+ 00. (16)

I

mn(nk)10"n(m, x) - Qn(m, x)1 = L f --1 Pk(mn, x)
k=O mn+

mn (k) (- L f - (Xk(mx)
k=O m

~ I If(~l)IIPk(mn,x)-ak(mx),
k=O mn+

mn
~M L \Pk(mn,x)-(Xk(mx)!

k=O

Since f is uniformly continuous on [0, (0), it is easy to show that given
B > 0 there exists an integer No such that for n ~ No,

Thus for n ~ No we have

mn
100n(m, x) - Qn(m, x)1 ~ M L IPk(mn, x) - (Xk(mx)1 + B.

k=O

Hence by the preceding lemma we obtain

and (14) follows from (15), (16), and (17).

as n -+ 00, (17)
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